(tan^2x+1)(cos^2x+1)=tan^2x+2

2 min read Jun 16, 2024
(tan^2x+1)(cos^2x+1)=tan^2x+2

Proving the Trigonometric Identity: (tan²x + 1)(cos²x + 1) = tan²x + 2

This article will demonstrate the steps involved in proving the trigonometric identity: (tan²x + 1)(cos²x + 1) = tan²x + 2.

Utilizing Fundamental Identities

We begin by expanding the left-hand side of the equation using the distributive property:

(tan²x + 1)(cos²x + 1) = tan²x * cos²x + tan²x + cos²x + 1

Next, we employ the fundamental trigonometric identity tan²x + 1 = sec²x:

= sec²x * cos²x + tan²x + cos²x + 1

Recall that secx = 1/cosx, so sec²x * cos²x = 1:

= 1 + tan²x + cos²x + 1

Finally, we utilize another fundamental identity, sin²x + cos²x = 1, to simplify further:

= 1 + tan²x + (1 - sin²x) + 1

Combining like terms, we arrive at:

= tan²x + 2

Conclusion

We have successfully shown that the left-hand side of the equation simplifies to tan²x + 2, which is the right-hand side of the equation. Therefore, the trigonometric identity (tan²x + 1)(cos²x + 1) = tan²x + 2 is proven.

Related Post


Featured Posts